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Integer Factorization



The problem

Definition
Given an integer N, the goal of the integer factorization problem
is to find k primes pe1

1 ,pe2
2 , . . . ,pekk such that N = pe1

1 pe2
2 . . .pekk with

ei ≥ 1 ∀i ∈ {1, . . . , k}.

Example
Given N = 143 we know that the solution is the pair (13, 11).
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RSA

RSA
(pk, sk)← keygen(): given two primes p and q

let n = pq
choose e,d such that e · d ≡ 1 mod ϕ(n)
return pk = (n, e), sk = (n,d)

c← encpk(m) = me mod n

m← decsk(c) = cd mod n

RSA’s Security
The RSA’s Problem can be reduced to the Integer Factorization’s
Problem.
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Solution in the classical model



Brute Force

Brute Force strategy
The brute force algorithm goes through all primes p up to

√
N

and checks whether p divides N.

Complexity
In the worst case, this would take time roughly , which is
exponential in the number of digits d = log2 N.
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Quadratic Sieve

Quadratic Sieve Algorithm
A more efficient algorithm, known as the quadratic sieve,
attempts to construct integers a,b such that a2 − b2 is a multiple
of N. Once such a,b are found, one checks whether a± b have
common factors with N.

Complexity
The quadratic sieve method has asymptotic runtime exponential
in
√
d, where d = log2 N is the number of digits of N.
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General Number Field Sieve

GNFS
The General Number Field Sieve is the most efficient classical
factoring algorithm. The main idea is the use of smooth numbers.

GNFS - Complexity
The number of digit of N is equals to d = log2 N. The algorithm’s
complexity can be simplified as follows

O(exp(const× d1/3))
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The Period Finding Problem



The period finding problem

Definition of the problem
Given integers N and a, find the smallest positive integer r such
that

ar ≡ 1 mod N ⇐⇒ N | ar − 1

The number r is called the period of a modulo N.

Example
Suppose N = 15 and a = 7 then

72 ≡ 4 mod 15, 73 ≡ 13 mod 15, 74 ≡ 1 mod 15

That is, 7 has period 4 modulo 15.
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From factoring to period finding

(N,a) →
period-finding

machine

→ r

where r is the period of a modulo N.
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From factoring to period finding

Assumption: N has only two distinct prime factors, N = pq.

Experiment

1. a $← [2,N− 1] such that gcd(N,a) = 1
2. r ← period-finding-machine(N,a)
3. go to 1 until r is even

Note
It can be shown that a significant fraction of all integers a have
an even period, so on average one needs only a few repetitions.
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Example

Table of iterations
Suppose N = 15.

a r gcd(15,ar/2 − 1) gcd(15,ar/2 + 1)
1 1
2 4 3 5
4 2 3 5
7 4 3 5
8 4 3 5
11 2 5 3
13 4 3 5
14 2 1 15
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What we found

We have found some pair (r,a) such that
1. r is even
2. r is the smallest integer such that ar − 1 is a multiple of N

Also, we know that

ar − 1 = (ar/2 − 1)(ar/2 + 1)

The above shows that ar/2 − 1 is not a multiple of N, otherwise
the period of a would be r/2.
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What we found

Assumption: ar/2 + 1 is not a multiple of N.

=⇒ ar/2 ± 1 is not a multiple of N, but their product is.

This is possible only if

p is a prime factor of ar/2 − 1 ∧ q is a prime factor of ar/2 + 1
(or vice versa)

We can thus find find p,q by computing

gcd(N,ar/2 ± 1)
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What we found: the unlucky case

When

ar/2 + 1 is a multiple of N

we are in the unlucky case

=⇒ we give up and try a diffrent integer a.

Fact
It can be shown that the unlucky integers a are not too frequent,
so on average, only two calls to the period-finding machine are
sufficient to factor N.
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Example: the unlucky case

Table of iterations
Suppose N = 15.

a r gcd(15,ar/2 − 1) gcd(15,ar/2 + 1)
1 1
2 4 3 5
4 2 3 5
7 4 3 5
8 4 3 5
11 2 5 3
13 4 3 5
14 2 1 15
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Shor’s Algorithm



Shor’s Algorithm

Shor’s Algorithm is a quantum computer algorithm to solve the
period-finding’s problem.

It was developed in 1994 by the American mathematician Peter
Shor.
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Classical part

Algorithm

1. a $← [2,N− 1]
2. Compute K = gcd(N,a)
3. if K = 1 then
4. r ← quantum-period-finding-subroutine(N,a)
5. if (r is odd || ar/2 ≡ −1 mod N) then

go to 1
6. else

return gcd(ar/2 + 1,N),gcd(ar/2 − 1,N)
7. else go to 1

Where the gcd function is computed using the Euclidean
Algorithm.
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Quantum part: period-finding subroutine

The main idea is to use the quantum phase estimation on the
unitary operator

U|y⟩ ≡ ay mod N⟩

Example
With a = 7 and N = 15

U|1⟩ = |7⟩
U2|1⟩ = |4⟩
U3|1⟩ = |13⟩
U4|1⟩ = |1⟩
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Example
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Circuit diagram
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Period-Finding Subroutine

So a superposition of the states in this cycle |u0⟩ would be an
eigenstate of U:

|u0⟩ =
1√
r

r−1∑
k=0
|ak mod N⟩

Example with a = 7,N = 15

|u0⟩ =
1
2 (|1⟩+ |7⟩+ |4⟩+ |13⟩)

U|u0⟩ =
1
2 (U|1⟩+ U|7⟩+ U|4⟩+ U|13⟩)

=
1
2 (|7⟩+ |4⟩+ |13⟩+ |1⟩) = |u0⟩
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Case u1

A more interesting eigenstate could be one in which the phase is
different for each of these computational basis states.
For instance,

|u1⟩ =
1√
r

r−1∑
k=0

e−
2πik
r |ak mod N⟩

U|u1⟩ = e
2πi
r |u1
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Example

Example a = 7,N = 15

|u1⟩ =
1
2 (|1⟩+ e−

2πi
4 |7 + e−

4πi
4 |4⟩+ e−

6πi
4 |13⟩)

U|u1⟩ =
1
2 (|7⟩+ e−

2πi
4 |4 + e−

4πi
4 |13⟩+ e−

6πi
4 |1⟩)

U|u1⟩ = e
2πi
4 · 1

2 (|e−
2πi
4 |7 + e−

4πi
4 |4⟩+ e−

6πi
4 |13⟩+ e−

8πi
4 |1⟩)

U|u1⟩ = e
2πi
4 |u1⟩
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Case us

We can see that r appears in the denominator of the phase. This
is interesting. Generalizing the idea, we obtain

|us⟩ =
1√
r

r−1∑
k=0

e−
2πisk
r |ak mod N⟩

U|us⟩ = e
2πis
r |us⟩

We now have a unique eigenstate for each integer value of s
where

0 ≤ s ≤ r − 1
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The phase

Fact
If we sum up all the eigenstates, the different phases cancel out
all computational basis states except |1⟩

1
r

r−1∑
s=0
|us⟩ = |1⟩

If we apply the Quantum Phase Estimation on U using the state
|1⟩, we will measure a phase

ϕ =
s
r

where s is the random number between 0 and r − 1.
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Continued fraction

Using the Quantum Phase Estimation we can find the phase ϕ but
not r. We can find r using the Continued fractions algorithm.

Definition
Let a0,a1, . . . ,ak ∈ Z such that ∀i ∈ {1, . . . , k}ai ≥ 0. Then the
expression

r = a0 +
1

a1 +
1

···+ 1
ak

is called the continued fraction rapresentation of the rational
number r and is denoted shortly as r = [a0,a1, . . . ,ak]
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Continued fraction: algorithm

Continued Fractions Algorithm
Input: ϕ, e = 0.0001
Output: s,r

1. A← [⌊ϕ⌋]
2. while ϕ− ⌊ϕ⌋ > e then

ϕ← 1/(ϕ− ⌊ϕ⌋)
append ⌊ϕ⌋ to A

3. p← [0, 1],q← [1,0]
4. for each it in A do

append p[len(p)] ∗ it+ p[len(p)− 1] to p
append q[len(q)] ∗ it+ q[len(q)− 1] to q

5. return p[len(p)],q[len(q)]
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Example

Example r = 5
3

r = [1, 1, 2] = 1 + 1
1 + 1

1+ 1
2

P = [0, 1, 1, 2, 5] =⇒ p = 5 Q = [1,0, 1, 1, 3] =⇒ q = 3
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About complexity

Complexity
The number of digit of N is equals to d = log2 N. The Shor’s
Algorithm complexity can be simplified as follows

O(const× d3)
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