SHOR'S ALGORITHM

QUANTUM COMPUTER PROGRAMMING

DAVIDE CARNEMOLLA

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

UNIVERSITY OF CATANIA

2022/2023

INTEGER FACTORIZATION

THE PROBLEM

Definition

Given an integer N, the goal of the integer factorization problem is to find k primes $p_1^{e_1}, p_2^{e_2}, \ldots, p_k^{e_k}$ such that $N = p_1^{e_1} p_2^{e_2} \ldots p_k^{e_k}$ with $e_i \ge 1 \quad \forall i \in \{1, \ldots, k\}$.

Example

Given N = 143 we know that the solution is the pair (13, 11).

RSA

RSA

```
(pk, sk) \leftarrow keygen(): given two primes p and q let n = pq choose e, d such that e \cdot d \equiv 1 \mod \phi(n) return pk = (n, e), sk = (n, d)
```

$$c \leftarrow \mathbf{enc}_{pk}(m) = m^e \mod n$$

$$m \leftarrow \mathbf{dec}_{sk}(c) = c^d \mod n$$

RSA's Security

The RSA's Problem can be reduced to the Integer Factorization's Problem.

SOLUTION IN THE CLASSICAL MODEL

BRUTE FORCE

Brute Force strategy

The brute force algorithm goes through all primes p up to \sqrt{N} and checks whether p divides N.

Complexity

In the worst case, this would take time roughly , which is exponential in the number of digits $d = \log_2 N$.

QUADRATIC SIEVE

Quadratic Sieve Algorithm

A more efficient algorithm, known as the quadratic sieve, attempts to construct integers a,b such that a^2-b^2 is a multiple of N. Once such a,b are found, one checks whether $a\pm b$ have common factors with N.

Complexity

The quadratic sieve method has asymptotic runtime exponential in \sqrt{d} , where $d = \log_2 N$ is the number of digits of N.

GENERAL NUMBER FIELD SIEVE

GNFS

The General Number Field Sieve is the most efficient classical factoring algorithm. The main idea is the use of smooth numbers.

GNFS - Complexity

The number of digit of N is equals to $d = \log_2 N$. The algorithm's complexity can be simplified as follows

$$\mathcal{O}(exp(const \times d^{1/3}))$$

THE PERIOD FINDING PROBLEM

THE PERIOD FINDING PROBLEM

Definition of the problem

Given integers N and a, find the smallest positive integer r such that

$$a^r \equiv 1 \mod N \iff N \mid a^r - 1$$

The number r is called the period of a modulo N.

Example

Suppose N = 15 and a = 7 then

$$7^2 \equiv 4 \mod 15$$
, $7^3 \equiv 13 \mod 15$, $7^4 \equiv 1 \mod 15$

That is, 7 has period 4 modulo 15.

FROM FACTORING TO PERIOD FINDING

$$(N,a) \rightarrow \sum_{\substack{\text{period-finding} \\ \text{machine}}} r$$

where r is the period of a modulo N.

FROM FACTORING TO PERIOD FINDING

Assumption: N has only two distinct prime factors, N = pq.

Experiment

- 1. $a \stackrel{\$}{\leftarrow} [2, N-1]$ such that gcd(N, a) = 1
- 2. $r \leftarrow \text{period-finding-machine}(N, a)$
- 3. go to 1 until r is even

Note

It can be shown that a significant fraction of all integers *a* have an even period, so on average one needs only a few repetitions.

EXAMPLE

Table of iterations

Suppose N = 15.

а	r	$gcd(15, a^{r/2} - 1)$	$gcd(15, a^{r/2} + 1)$	
1	1			
2	4	3	5	
4	2	3	5	
7	4	3	5	
8	4	3	5	
11	2	5	3	
13	4	3	5	
14	2	1	15	

WHAT WE FOUND

We have found some pair (r, a) such that

- 1. *r* is even
- 2. r is the smallest integer such that $a^r 1$ is a multiple of N

Also, we know that

$$a^{r}-1=(a^{r/2}-1)(a^{r/2}+1)$$

The above shows that $a^{r/2} - 1$ is not a multiple of N, otherwise the period of a would be r/2.

WHAT WE FOUND

Assumption: $a^{r/2} + 1$ is not a multiple of *N*.

 $\implies a^{r/2} \pm 1$ is not a multiple of N, but their product is.

This is possible only if

p is a prime factor of $a^{r/2} - 1 \wedge q$ is a prime factor of $a^{r/2} + 1$ (or vice versa)

We can thus find find p, q by computing

$$gcd(N, a^{r/2} \pm 1)$$

What we found: the unlucky case

When

$$a^{r/2} + 1$$
 is a multiple of N

we are in the unlucky case

 \implies we give up and try a diffrent integer a.

Fact

It can be shown that the unlucky integers a are not too frequent, so on average, only two calls to the period-finding machine are sufficient to factor N.

EXAMPLE: THE UNLUCKY CASE

Table of iterations

Suppose N = 15.

а	r	$gcd(15, a^{r/2} - 1)$	$gcd(15, a^{r/2} + 1)$	
1	1			
2	4	3	5	
4	2	3	5	
7	4	3	5	
8	4	3	5	
11	2	5	3	
13	4	3	5	
14	2	1	15	

SHOR'S ALGORITHM

7	7	7	7

SHOR'S ALGORITHM

Shor's Algorithm is a quantum computer algorithm to solve the period-finding's problem.

It was developed in 1994 by the American mathematician Peter Shor.

CLASSICAL PART

Algorithm

- 1. $a \stackrel{\$}{\leftarrow} [2, N-1]$
- 2. Compute K = gcd(N, a)
- 3. if K = 1 then
- 4. $r \leftarrow \text{quantum-period-finding-subroutine}(N, a)$
- 5. **if** (r is odd $|| a^{r/2} \equiv -1 \mod N$) **then** go to 1
- 6. **else** return $qcd(a^{r/2} + 1, N), qcd(a^{r/2} 1, N)$
- 7. **else** go to 1

Where the gcd function is computed using the Euclidean Algorithm.

QUANTUM PART: PERIOD-FINDING SUBROUTINE

The main idea is to use the quantum phase estimation on the unitary operator

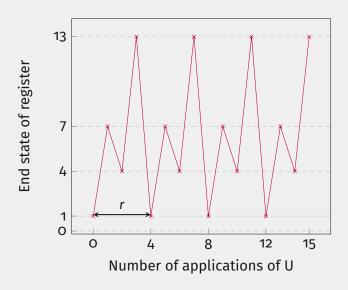
$$U|y\rangle \equiv ay \mod N\rangle$$

Example

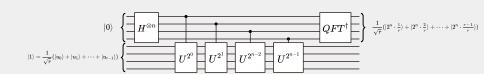
With a = 7 and N = 15

$$U|1\rangle = |7\rangle$$
 $U^2|1\rangle = |4\rangle$
 $U^3|1\rangle = |13\rangle$
 $U^4|1\rangle = |1\rangle$

EXAMPLE



CIRCUIT DIAGRAM



PERIOD-FINDING SUBROUTINE

So a superposition of the states in this cycle $|u_0\rangle$ would be an eigenstate of U:

$$|u_0\rangle = \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} |a^k \bmod N\rangle$$

Example with a = 7, N = 15

$$|u_{0}\rangle = \frac{1}{2} (|1\rangle + |7\rangle + |4\rangle + |13\rangle)$$

$$U|u_{0}\rangle = \frac{1}{2} (U|1\rangle + U|7\rangle + U|4\rangle + U|13\rangle)$$

$$= \frac{1}{2} (|7\rangle + |4\rangle + |13\rangle + |1\rangle) = |u_{0}\rangle$$

CASE U₁

A more interesting eigenstate could be one in which the phase is different for each of these computational basis states. For instance,

$$|u_1
angle = rac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-rac{2\pi i k}{r}} |a^k \bmod N
angle$$
 $U|u_1
angle = e^{rac{2\pi i l}{r}|u_1}$

EXAMPLE

Example a = 7, N = 15

$$\begin{split} |u_{1}\rangle &= \frac{1}{2}\left(|1\rangle + e^{-\frac{2\pi i}{4}}|7 + e^{-\frac{4\pi i}{4}}|4\rangle + e^{-\frac{6\pi i}{4}}|13\rangle\right) \\ U|u_{1}\rangle &= \frac{1}{2}\left(|7\rangle + e^{-\frac{2\pi i}{4}}|4 + e^{-\frac{4\pi i}{4}}|13\rangle + e^{-\frac{6\pi i}{4}}|1\rangle\right) \\ U|u_{1}\rangle &= e^{\frac{2\pi i}{4}} \cdot \frac{1}{2}\left(|e^{-\frac{2\pi i}{4}}|7 + e^{-\frac{4\pi i}{4}}|4\rangle + e^{-\frac{6\pi i}{4}}|13\rangle + e^{-\frac{8\pi i}{4}}|1\rangle\right) \\ U|u_{1}\rangle &= e^{\frac{2\pi i}{4}}|u_{1}\rangle \end{split}$$

CASE Us

We can see that *r* appears in the denominator of the phase. This is interesting. Generalizing the idea, we obtain

$$|u_{s}\rangle = \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-\frac{2\pi i s k}{r}} |a^{k} \mod N\rangle$$

$$U|u_{s}\rangle = e^{\frac{2\pi i s}{r}} |u_{s}\rangle$$

We now have a unique eigenstate for each integer value of s where

$$0 \le s \le r - 1$$

THE PHASE

Fact

If we sum up all the eigenstates, the different phases cancel out all computational basis states except $|1\rangle$

$$\frac{1}{r}\sum_{s=0}^{r-1}|u_s\rangle=|1\rangle$$

If we apply the Quantum Phase Estimation on U using the state $|1\rangle$, we will measure a phase

$$\phi = \frac{\mathsf{s}}{\mathsf{r}}$$

where s is the random number between 0 and r-1.

CONTINUED FRACTION

Using the Quantum Phase Estimation we can find the phase ϕ but not r. We can find r using the Continued fractions algorithm.

Definition

Let $a_0, a_1, \ldots, a_k \in \mathbb{Z}$ such that $\forall i \in \{1, \ldots, k\} a_i \geq 0$. Then the expression

$$r = a_0 + \frac{1}{a_1 + \frac{1}{\dots + \frac{1}{a_k}}}$$

is called the **continued fraction rapresentation** of the rational number r and is denoted shortly as $r = [a_0, a_1, \dots, a_k]$

CONTINUED FRACTION: ALGORITHM

Continued Fractions Algorithm

Input: ϕ , e = 0.0001

Output: s,r

- 1. $A \leftarrow [|\phi|]$
- 2. while $\phi |\phi| > e$ then $\phi \leftarrow 1/(\phi - |\phi|)$ append $|\phi|$ to A
- 3. $p \leftarrow [0, 1], q \leftarrow [1, 0]$
- 4. **for each** it in A **do append** p[len(p)] * it + p[len(p) - 1] **to** p**append** q[len(q)] * it + q[len(q) - 1] **to** q
- return p[len(p)], q[len(q)]

EXAMPLE

Example $r = \frac{5}{2}$

$$r = [1, 1, 2] = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{2}}}$$

$$P = [0, 1, 1, 2, 5] \implies p = 5$$
 $Q = [1, 0, 1, 1, 3] \implies q = 3$

ABOUT COMPLEXITY

Complexity

The number of digit of N is equals to $d = \log_2 N$. The Shor's Algorithm complexity can be simplified as follows

$$\mathcal{O}(const \times d^3)$$